本文共 6361 字,大约阅读时间需要 21 分钟。
应用场景:
(1)用于分区排序 (2)动态Group By (3)Top N (4)累计计算 (5)层次查询FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
LAST_VALUE: 取分组内排序后,截止到当前行,最后一个值 LEAD(col,n,DEFAULT) :用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL) LAG(col,n,DEFAULT) :与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)OVER从句
1、使用标准的聚合函数COUNT、SUM、MIN、MAX、AVG
PARTITION BY
语句,使用一个或者多个原始数据类型的列 3、使用PARTITION BY
与ORDER BY
语句,使用一个或者多个数据类型的分区或者排序列 4、使用窗口规范,窗口规范支持以下格式: (ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)(ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)(ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING
当ORDER BY
后面缺少窗口从句条件,窗口规范默认是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
.
当ORDER BY
和窗口从句都缺失, 窗口规范默认是 ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
.
OVER
从句支持以下函数, 但是并不支持和窗口一起使用它们。
Rank, NTile, DenseRank, CumeDist, PercentRank
. Lead
和 Lag
函数. ROW_NUMBER() 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。
RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位 DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位 CUME_DIST 小于等于当前值的行数/分组内总行数。比如,统计小于等于当前薪水的人数,所占总人数的比例 PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1 NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。Hive2.1.0及以后支持Distinct
在聚合函数(SUM, COUNT and AVG)中,支持distinct,但是在ORDER BY 或者 窗口限制不支持。
COUNT(DISTINCT a) OVER (PARTITION BY c)
Hive 2.2.0中在使用ORDER BY和窗口限制时支持distinct
COUNT(DISTINCT a) OVER (PARTITION BY c ORDER BY d ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
Hive2.1.0及以后支持在OVER从句中支持聚合函数
SELECT rank() OVER (ORDER BY sum(b))FROM TGROUP BY a;
## COUNT、SUM、MIN、MAX、AVGselect user_id, user_type, sales, --默认为从起点到当前行 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc) AS sales_1, --从起点到当前行,结果与sales_1不同。 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sales_2, --当前行+往前3行 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS sales_3, --当前行+往前3行+往后1行 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS sales_4, --当前行+往后所有行 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS sales_5, --分组内所有行 SUM(sales) OVER(PARTITION BY user_type) AS sales_6 from order_detailorder by user_type, sales, user_id;
结果和ORDER BY相关,默认为升序
如果不指定ROWS BETWEEN,默认为从起点到当前行; 如果不指定ORDER BY,则将分组内所有值累加;关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前FOLLOWING:往后CURRENT ROW:当前行UNBOUNDED:无界限(起点或终点)UNBOUNDED PRECEDING:表示从前面的起点 UNBOUNDED FOLLOWING:表示到后面的终点 其他COUNT、AVG,MIN,MAX,和SUM用法一样。
## first_value与last_valueselect user_id, user_type, ROW_NUMBER() OVER(PARTITION BY user_type ORDER BY sales) AS row_num, first_value(user_id) over (partition by user_type order by sales desc) as max_sales_user, first_value(user_id) over (partition by user_type order by sales asc) as min_sales_user, last_value(user_id) over (partition by user_type order by sales desc) as curr_last_min_user, last_value(user_id) over (partition by user_type order by sales asc) as curr_last_max_userfrom order_detail;
## lead与lagselect user_id,device_id, lead(device_id) over (order by sales) as default_after_one_line, lag(device_id) over (order by sales) as default_before_one_line, lead(device_id,2) over (order by sales) as after_two_line, lag(device_id,2,'abc') over (order by sales) as before_two_linefrom order_detail;
## RANK、ROW_NUMBER、DENSE_RANKselect user_id,user_type,sales, RANK() over (partition by user_type order by sales desc) as r, ROW_NUMBER() over (partition by user_type order by sales desc) as rn, DENSE_RANK() over (partition by user_type order by sales desc) as drfrom order_detail;
## NTILEselect user_type,sales, --分组内将数据分成2片 NTILE(2) OVER(PARTITION BY user_type ORDER BY sales) AS nt2, --分组内将数据分成3片 NTILE(3) OVER(PARTITION BY user_type ORDER BY sales) AS nt3, --分组内将数据分成4片 NTILE(4) OVER(PARTITION BY user_type ORDER BY sales) AS nt4, --将所有数据分成4片 NTILE(4) OVER(ORDER BY sales) AS all_nt4from order_detailorder by user_type, sales;
# 求取sale前20%的用户IDselect user_idfrom( select user_id, NTILE(5) OVER(ORDER BY sales desc) AS nt from order_detail)Awhere nt=1;
## CUME_DIST、PERCENT_RANK select user_id,user_type,sales,--没有partition,所有数据均为1组CUME_DIST() OVER(ORDER BY sales) AS cd1,--按照user_type进行分组CUME_DIST() OVER(PARTITION BY user_type ORDER BY sales) AS cd2 from order_detail;
select user_type,sales--分组内总行数 SUM(1) OVER(PARTITION BY user_type) AS s, --RANK值 RANK() OVER(ORDER BY sales) AS r, PERCENT_RANK() OVER(ORDER BY sales) AS pr,--分组内 PERCENT_RANK() OVER(PARTITION BY user_type ORDER BY sales) AS prg from order_detail;
这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL,
其中的GROUPING__ID,表示结果属于哪一个分组集合。select user_type, sales, count(user_id) as pv, GROUPING__ID from order_detailgroup by user_type,salesGROUPING SETS(user_type,sales) ORDER BY GROUPING__ID;
select user_type, sales, count(user_id) as pv, GROUPING__ID from order_detailgroup by user_type,salesGROUPING SETS(user_type,sales,(user_type,sales)) ORDER BY GROUPING__ID;
根据GROUP BY的维度的所有组合进行聚合。
select user_type, sales, count(user_id) as pv, GROUPING__ID from order_detailgroup by user_type,salesWITH CUBE ORDER BY GROUPING__ID;
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
select user_type, sales, count(user_id) as pv, GROUPING__ID from order_detailgroup by user_type,salesWITH ROLLUP ORDER BY GROUPING__ID;
转载: